The generalized (two-parameter) Mittag-Leffer function is defined by the power series $$E_{\alpha,\beta} (z) = \sum_{k=0}^\infty z^k / \Gamma(\alpha k + \beta) $$ for complex \(z\) and complex \(\alpha, \beta\) with \(Real(\alpha) > 0\) (only implemented for real valued parameters).

mlf(z, a, b = 1, g = 1)

Arguments

z

The argument (real-valued)

a, b, g

Parameters of the Mittag-Leffler distribution; see Garrappa

Value

mlf returns the value of the Mittag-Leffler function.

References

Garrappa, R. (2015). Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions. SIAM Journal on Numerical Analysis, 53(3), 1350–1369. doi: 10.1137/140971191

The Mittag-Leffler function. MathWorks File Exchange. https://au.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function

Examples

mlf(2,0.7)
#> [1] 20.96643