Introduction
This vignette details how the functions dml()
, pml()
, qml()
and rml()
are evaluated using the Mittag-Leffler function mlf()
and functions from the package stabledist
. Evaluation of the Mittag-Leffler function relies on the algorithm by Garrappa (2015).
Mittag-Leffler function
Write Eα,β(z) for the two-parameter Mittag-Leffler function, and Eα(z):=Eα,1(z) for the one-parameter Mittag-Leffler function. One has
Eα,β(z)=∞∑k=0zkΓ(β+αk),α∈C,ℜ(α)>0,z∈C,
see Haubold, Mathai, and Saxena (2011).
First type Mittag-Leffler distribution
pml()
The cumulative distribution function at unit scale is (see Haubold, Mathai, and Saxena (2011))
F(y)=1−Eα(−yα)
dml()
The probability density function at unit scale is (see Haubold, Mathai, and Saxena (2011))
f(y)=ddyF(y)=yα−1Eα,α(−yα)
qml()
The quantile function qml()
is calculated by numeric inversion of the cumulative distribution function pml()
using stats::uniroot()
.
rml()
Mittag-Leffler random variables Z are generated as the product of a stable random variable Y with Laplace Transform exp(−sα) (using the package stabledist
) and X1/α where X is a unit exponentially distributed random variable, see Haubold, Mathai, and Saxena (2011).
Second type Mittag-Leffler distribution
Meerschaert and Scheffler (2004) introduce the inverse stable subordinator, a stochastic process E(t). The random variable E:=E(1) has unit scale Mittag-Leffler distribution of second type, see the equation under Remark 3.1. By Corollary 3.1, E is equal in distribution to Y−α:
Ed=Y−α,
where Y is a sum-stable randomvariable as above.
pml()
Using stabledist
, we can hence calculate the cumulative distribution function of E:
P[E≤q]=P[Y−α≤q]=P[Y≥q−1/α]
dml()
The probability density function is evaluated using the formula
f(x)=1αx−1−1/αfY(x−1/α)
where fY(x) is the probability density of the stable random variable Y.
qml()
Let q=(F−1Y(1−p))−α, where p∈(0,1) and F−1Y denotes the quantile function of Y, implemented in stabledist
. Then one confirms
FY(q−1/α)=1−p⇒P[Y≥q−1/α]=p⇒P[Y−α≤q]=p
which means FE(q)=p.
rml()
Mittag-Leffler random variables E of second type are directly simulated as Y−α, using stabledist
.
References
Garrappa, Roberto. 2015.
“Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions.” SIAM J. Numer. Anal. 53 (3): 1350–69.
https://doi.org/10.1137/140971191.
Haubold, H. J., A. M. Mathai, and R. K. Saxena. 2011.
“Mittag-Leffler Functions and Their Applications.” J. Appl. Math. 2011: 1–51.
https://doi.org/10.1155/2011/298628.
Meerschaert, Mark M, and Hans-Peter Scheffler. 2004.
“Limit Theorems for Continuous-Time Random Walks with Infinite Mean Waiting Times.” J. Appl. Probab. 41 (3): 623–38.
https://doi.org/10.1239/jap/1091543414.