Processing math: 100%

Introduction

This vignette details how the functions dml(), pml(), qml() and rml() are evaluated using the Mittag-Leffler function mlf() and functions from the package stabledist. Evaluation of the Mittag-Leffler function relies on the algorithm by Garrappa (2015).

Mittag-Leffler function

Write Eα,β(z) for the two-parameter Mittag-Leffler function, and Eα(z):=Eα,1(z) for the one-parameter Mittag-Leffler function. One has

Eα,β(z)=k=0zkΓ(β+αk),αC,(α)>0,zC,

see Haubold, Mathai, and Saxena (2011).

First type Mittag-Leffler distribution

pml()

The cumulative distribution function at unit scale is (see Haubold, Mathai, and Saxena (2011))

F(y)=1Eα(yα)

dml()

The probability density function at unit scale is (see Haubold, Mathai, and Saxena (2011))

f(y)=ddyF(y)=yα1Eα,α(yα)

qml()

The quantile function qml() is calculated by numeric inversion of the cumulative distribution function pml() using stats::uniroot().

rml()

Mittag-Leffler random variables Z are generated as the product of a stable random variable Y with Laplace Transform exp(sα) (using the package stabledist) and X1/α where X is a unit exponentially distributed random variable, see Haubold, Mathai, and Saxena (2011).

Second type Mittag-Leffler distribution

Meerschaert and Scheffler (2004) introduce the inverse stable subordinator, a stochastic process E(t). The random variable E:=E(1) has unit scale Mittag-Leffler distribution of second type, see the equation under Remark 3.1. By Corollary 3.1, E is equal in distribution to Yα:

Ed=Yα,

where Y is a sum-stable randomvariable as above.

pml()

Using stabledist, we can hence calculate the cumulative distribution function of E:

P[Eq]=P[Yαq]=P[Yq1/α]

dml()

The probability density function is evaluated using the formula

f(x)=1αx11/αfY(x1/α)

where fY(x) is the probability density of the stable random variable Y.

qml()

Let q=(F1Y(1p))α, where p(0,1) and F1Y denotes the quantile function of Y, implemented in stabledist. Then one confirms

FY(q1/α)=1pP[Yq1/α]=pP[Yαq]=p

which means FE(q)=p.

rml()

Mittag-Leffler random variables E of second type are directly simulated as Yα, using stabledist.

References

Garrappa, Roberto. 2015. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions.” SIAM J. Numer. Anal. 53 (3): 1350–69. https://doi.org/10.1137/140971191.
Haubold, H. J., A. M. Mathai, and R. K. Saxena. 2011. Mittag-Leffler Functions and Their Applications.” J. Appl. Math. 2011: 1–51. https://doi.org/10.1155/2011/298628.
Meerschaert, Mark M, and Hans-Peter Scheffler. 2004. Limit Theorems for Continuous-Time Random Walks with Infinite Mean Waiting Times.” J. Appl. Probab. 41 (3): 623–38. https://doi.org/10.1239/jap/1091543414.